Part Number Hot Search : 
UPA814TC MC74HC H11L2X CD22301 L1117XG B600K OPV300 SDA32N20
Product Description
Full Text Search
 

To Download V23990-P544-A39-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p544-*3*-pm flowpim 0 600v/15a vincotech clip-in housing trench fieldstop igbt's for low saturation losses optional w/o brc industrial drives embedded drives v23990-p544-a38-pm V23990-P544-A39-PM v23990-p544-c38-pm v23990-p544-c39-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 33 t c =80c 46 t h =80c 37 t c =80c 59 maximum junction temperature t j max 150 c inverter transistor t h =80c 20 t c =80c 25 t h =80c 45 t c =80c 69 t sc t j 150c 6 s v cc v ge =15v 360 v a v c 175 t j =t j max v ge i cpulse t j max p tot i c w a 600 a v vce 600v, tj top max t p limited by t j max v ce t j =t j max turn off safe operating area collector-emitter break down voltage dc collector current power dissipation per igbt maximum junction temperature short circuit ratings gate-emitter peak voltage repetitive peak collector current surge forward current power dissipation per diode target applications t j =25c 310 p tot i 2 t t j =t j max 50hz half sine wave a 250 a t p =10ms features flowpim 0 housing schematic dc forward current t j =t j max types i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode w 45 20 45 17mm housing 12mm housing copyright vincotech 1 revision: 4
v23990-p544-*3*-pm t j =25c, unless otherwise specified parameter sy mbol value unit maximum ratings condition inverter diode t h =80c 1 8 t c =80c 2 3 t h =80c 3 5 t c =80c 5 2 brake transistor t h =80c 1 4 t c =80c 1 8 t h =80c 3 6 t c =80c 5 5 t sc t j 1 50c 10 s v cc v ge =15v 3 60 v brake diode t h =80c 1 4 t c =80c 1 9 t h =80c 2 7 t c =80c 4 1 thermal properties i nsulation properties v is t=2s dc v oltage 4000 v min 12,7 mm min 12,7 mm cti >200 30 comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition cl earance c storage temperature t stg -40+125 c -40+(tjmax - 25) power dissipation per diode p tot t j =t j max w a a t p limited by t j max 2 0 t j =t j max m aximum junction temperature t j max 1 75 t j =t j max t p limited by t j max dc fo rward current a c t j =t j max a v 6 00 w c repetitive peak forward current v ge peak repetitive reverse voltage i frm v rrm dc forward current i f 175 i cpuls i c maximum junction temperature p eak repetitive reverse voltage repetitive peak forward current power dissipation per diode collector-emitter break down voltage repetitive peak collector current v dc collector current v ce w t p limited by t j max t j =t j max v ce 600v, tj top max a 30 a 30 maximum junction temperature short circuit ratings t j max t urn off safe operating area p tot power dissipation per igbt g ate-emitter peak voltage t j max p tot i frm v a v i f v rrm 600 t j =t j max 6 00 175 20 c copyright vincotech 2 revision: 4
v23990-p544-*3*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,16 1,6 tj=125c 1,13 tj=25c 0,90 tj=125c 0,78 tj=25c 8 tj=125c 11 tj=25c tj=150c 2 thermal resistance chip to heatsink per chip r thjh thermal grease t hickness 50um = 1 w/mk 1,89 k/w tj=25c 5 5,8 6,5 tj=150c tj=25c 1,1 1,61 1,9 tj=150c 1,81 tj=25c 0,00085 tj=150c tj=25c 300 tj=150c tj=25c 14 tj=150c 13 tj=25c 11 tj=150c 13 tj=25c 127 tj=150c 146 tj=25c 86 tj=150c 86 tj=25c 0,19 tj=150c 0,26 tj=25c 0,31 tj=150c 0,39 thermal resistance chip to heatsink per chip r thjh thermal grease t hickness 50um = 1 w/mk 2,10 k/w tj=25c 1,25 1,79 1,95 tj=150c 1,67 tj=25c 15 tj=150c 17 tj=25c 100 tj=150c 184 tj=25c 0,52 tj=150c 1,01 di(rec)max tj=25c 1448 /dt tj=150c 773 tj=25c 0,10 tj=150c 0,21 thermal resistance chip to heatsink per chip r thjh thermal grease t hickness 50um = 1 w/mk 2,75 k/w tj=25c pf ns 24 mws ns a nc na v ma v none 860 tj=25c rgon=16 1500 300 15 25 0 i ces r gint i ges collector-emitter saturation voltage v ce(sat) turn-on delay time r ise time gate-emitter leakage current reverse recovery time reverse recovered energy peak rate of fall of recovery current input capacitance output capacitance turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current r everse transfer capacitance diode forward voltage gate charge turn-off energy loss per pulse 15 15 q rr t rr q gate 15 15 480 300 15 600 rgon=16 rgoff=8 20 15 0 mws a/s c reverse current i r v v m m a 30 30 30 characteristic values forward voltage t hreshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t i nput rectifier diode va lue conditions integrated gate resistor inverter transistor gate emitter threshold voltage c ollector-emitter cut-off current incl. diode fall time turn-off delay time i rrm v f c oss c rss t f e on e off erec c ies t d(on) v ge(th) t r t d(off) v ce =v ge f=1mhz 0 15 0, 00021 v 87 55 15 copyright vincotech 3 revision: 4
v23990-p544-*3*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max c haracteristic values value c onditions tj=25c 5 5,8 6,5 tj=150c tj=25c 1,1 1,66 1,9 tj=150c 1,87 tj=25c 0,0006 tj=150c tj=25c 300 tj=150c none tj=25c 15 tj=150c 15 tj=25c 11 tj=150c 14 tj=25c 147 tj=150c 163 tj=25c 101 tj=150c 97 tj=25c 0,16 tj=150c 0,22 tj=25c 0,23 tj=150c 0,27 thermal resistance chip to heatsink per chip r thjh thermal grease t hickness 50um = 1 w/mk 2,61 k/w tj=25c 1,25 1,67 1,95 tj=150c 1,61 tj=25c 27 tj=150c tj=25c 10 tj=150c 10 tj=25c 149 tj=150c 208 tj=25c 0,46 tj=150c 0,46 di(rec)max tj=25c 620 /dt tj=150c 340 tj=25c 0,09 tj=150c 0,16 thermal resistance chip to heatsink per chip r thjh thermal grease t hickness 50um = 1 w/mk 3,53 k/w 25 15 10 551 tj=25c tc=100c tc=100c tj=25c 300 600 10 10 rgon=32 q rr e rec t hermistor reverse recovery time r gon=32 v f i r i rrm diode forward voltage r everse leakage current t rr ma na ns pf m ws 10 300 15 0 0 600 f=1mhz c rss rgon=32 r goff=16 v ce =v ge ? r /r r100=1486 rgon=32 rated resistance r reverse recovery energy power dissipation constant deviation of r100 480 mw/k power dissipation p mw nc brake diode integrated gate resistor c oss e on c ies i ges 0 15 15 e off 20 p eak rate of fall of recovery current peak reverse recovery current reverse recovered charge fall time t d(on) t r turn-off delay time t d(off) t f collector-emitter cut-off incl diode t urn-on energy loss per pulse r gint v ge(th) v ce(sat) turn-off energy loss per pulse r ise time turn-on delay time gate-emitter leakage current i ces gate charge i nput capacitance q gate reverse transfer capacitance o utput capacitance collector-emitter saturation voltage gate emitter threshold voltage brake transistor 10 0, 00015 tj=25c 17 tj=25c 62 40 -5 3,5 210 % 22000 5 mws c v a ns a/s a v v b-value b (25/50) tol. 3% k b (25/100) tj=25c 4000 k t j=25c b-value tol. 3% vincotech ntc reference a tj=25c copyright vincotech 4 revision: 4
v23990-p544-*3*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 12 5 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 ou tput inverter igbt figure 4 output inverter fwd typical transfer characteristics ty pical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 10 v output inverter typical output characteristics 0 10 20 30 40 50 60 0 1 2 3 4 v ce (v) i c (a) 0 3 6 9 12 15 18 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 4
v23990-p544-*3*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses ty pical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 00 v v ce = 3 00 v v ge = 15 v v ge = 15 v r gon = 16 i c = 15 a r goff = 8 figure 7 ou tput inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss ty pical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 00 v v ce = 3 00 v v ge = 15 v v ge = 15 v r gon = 16 i c = 15 a output inverter e on high t e off high t e on low t e off low t 0,0 0 ,2 0,4 0,6 0,8 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0,2 0,4 0,6 0,8 1,0 0 30 60 90 120 150 r g ( w ) e (mws) e rec t j = t jmax -25c e rec t j = 25c 0,0 0 ,1 0,2 0,3 0,4 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0,1 0,2 0,3 0,4 0 30 60 90 120 150 r g ( w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 6 r e vision: 4
v23990-p544-*3*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a ty pical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 2 5 c t j = 12 5 c v ce = 3 00 v v ce = 3 00 v v ge = 15 v v ge = 15 v r gon = 16 i c = 15 a r goff = 8 figure 11 ou tput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a ty pical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at a t t j = 25/125 c t j = 25/125 c v ce = 3 00 v v r = 3 00 v v ge = 15 v i f = 1 5 a r gon = 16 v g e = 1 5 v output inverter t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0 ,1 0,2 0,3 0,4 0 30 60 90 120 150 r g on ( w ww w ) t rr ( m s ) t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 20 40 60 80 100 120 140 r g ( w ww w ) t ( m s) t rr t j = t jmax -25c t j = 25c t rr 0,0 0 ,1 0,2 0,3 0,4 0 5 10 15 20 25 30 i c (a) t rr ( m s ) 25 / 125 25 / 125 copyright vincotech 7 r e vision: 4
v23990-p544-*3*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a ty pical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at a t at t j = 25/125 c t j = 25/125 c v ce = 3 00 v v r = 3 00 v v ge = 15 v i f = 1 5 a r gon = 16 v g e = 1 5 v figure 15 ou tput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a ty pical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at a t t j = 25/125 c t j = 25/125 c v ce = 3 00 v v r = 3 00 v v ge = 15 v i f = 1 5 a r gon = 16 v g e = 1 5 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 5 1 0 15 20 25 0 30 60 90 120 150 r gon ( w ww w ) i rrm (a) q rr t j = t jmax -25c q rr t j = 25c 0,0 0 ,3 0,6 0,9 1,2 1,5 0 30 60 90 120 150 r g on ( w ) q rr ( m c ) t j = t jmax -25c i rrm t j = 25c i rrm 0 3 6 9 1 2 15 18 0 5 10 15 20 25 30 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0 ,3 0,6 0,9 1,2 1,5 0 5 10 15 20 25 30 i c (a) q rr ( m c ) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 8 r e vision: 4
v23990-p544-*3*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward ty pical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 / dt,di rec /dt = f(r gon ) at a t t j = 25/125 c t j = 25/125 c v ce = 3 00 v v r = 3 00 v v ge = 15 v i f = 1 5 a r gon = 16 v g e = 1 5 v figure 19 ou tput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fw d transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = t p / t d = t p / t r thjh = 2, 10 k/w r thjh = 2, 75 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,07 3,4e+00 0,06 2,8e+00 0,05 8,2e+00 0,04 6,6e+00 0,25 3,7e-01 0,20 3,0e-01 0,17 7,4e-01 0,14 6,0e-01 0,98 7,6e-02 0,79 6,2e-02 0,78 1,1e-01 0,64 8,7e-02 0,42 1,4e-02 0,34 1,1e-02 0,74 3,1e-02 0,60 2,5e-02 0,19 2,5e-03 0,16 2,1e-03 0,48 5,4e-03 0,39 4,4e-03 0,19 3,0e-04 0,15 2,4e-04 0,24 8,5e-04 0,19 6,9e-04 output inverter thermal grease p hase change interface thermal grease phase change interface t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 400 800 1200 1600 2000 0 30 60 90 120 150 r gon ( w ww w ) di rec / dt (a/ m s ) di 0 /dt di rec /dt 0 400 800 1200 1600 2000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ m m m m s) di rec /dt d i 0 /dt 25 / 125 25 / 125 copyright vincotech 9 r e vision: 4
v23990-p544-*3*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a col lector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c v ge = 1 5 v figure 23 ou tput inverter fwd figure 24 output inverter fwd power dissipation as a for ward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c output inverter 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 4
v23990-p544-*3*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function ga te voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at a t d = single pulse i c = 1 5 a t h = 80 oc v ge = 15 v t j = t jmax oc figure 27 ou tput inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at a t v ce = 6 0 0 v v ce 60 0 v t j 17 5 oc t j = 17 5 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 1 00us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 0 20 40 60 80 100 120 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 50 100 150 200 250 12 14 16 18 20 v ge (v) i c (sc) copyright vincotech 11 revision: 4
v23990-p544-*3*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 o c u c cminus =u ccplus switching mode : 3 level switching 0 5 10 15 20 25 30 35 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 revision: 4
v23990-p544-*3*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics ty pical output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 12 5 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 br ake igbt figure 4 brake fwd typical transfer characteristics ty pical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 10 v brake 0 5 10 15 20 25 30 35 0 1 2 3 4 v ce (v) i c (a) 0 2 4 6 8 10 12 0 3 6 9 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 4
v23990-p544-*3*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses ty pical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 00 v v ce = 3 00 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a r goff = 16 fi gure 7 br ake fwd figure 8 brake fwd typical reverse recovery energy loss ty pical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 00 v v ce = 3 00 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a brake t j = t jmax - 25c e rec t j = 25c e rec 0,00 0,05 0,10 0,15 0,20 0,25 0 5 10 15 20 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0 ,05 0,10 0,15 0,20 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0,0 0 ,1 0,2 0,3 0,4 0,5 0,6 0 5 10 15 20 i c (a) e (mws) e off t j = t jmax -25c e on e on e off t j = 25c 0,0 0 ,2 0,4 0,6 0,8 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 1 4 re vision: 4
v23990-p544-*3*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a ty pical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 00 v v ce = 3 00 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a r goff = 16 fi gure 11 br ake igbt figure 12 brake fwd igbt transient thermal impedance fw d transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 2 , 61 k/w r thjh = 0, 60 k/w r thjh = 3, 53 k/w r thjh = 1, 27 k/w brake thermal grease p hase change interface thermal grease phase change interface t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 5 10 15 20 i c (a) t ( m s) t doff t f t don t r 0,00 0 ,01 0,10 1,00 0 50 100 150 200 250 300 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 25 / 125 25 / 125 copyright vincotech 1 5 re vision: 4
v23990-p544-*3*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a col lector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 oc t j = 17 5 oc v ge = 1 5 v figure 15 br ake fwd figure 16 brake fwd power dissipation as a for ward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 oc t j = 17 5 oc brake 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 4
v23990-p544-*3*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as di ode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 1, 89 k/w figure 3 re ctifier diode figure 4 rectifier diode power dissipation as a for ward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc input rectifier bridge 0 20 40 60 80 100 120 0,0 0,5 1,0 1,5 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 17 revision: 4
v23990-p544-*3*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic ty pical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4 000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 10 0/25 11 25 )( tt b ertr copyright vincotech 18 revision: 4
v23990-p544-*3*-pm t j 125 c r gon 32  r goff 16  figure 1 ou tput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t e on = integrating time for e on ) v ge (0%) = 0 v v g e (0%) = 0 v v g e (100%) = 15 v v ge (100%) = 15 v v c (100%) = 30 0 v v c (100%) = 30 0 v i c (100%) = 15 a i c (100%) = 15 a t doff = 0, 21 s t don = 0, 02 s t eoff = 0, 44 s t eon = 0, 20 s figure 3 ou tput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 3 0 0 v v c (100%) = 30 0 v i c (100%) = 15 a i c (100%) = 15 a t f = 0, 09 s t r = 0, 02 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -50 - 25 0 25 50 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -40 0 4 0 80 120 160 200 2,9 3 3,1 3,2 3,3 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -50 0 5 0 100 150 0,1 0,15 0,2 0,25 0,3 0,35 0,4 time (us) % v ce i c t f i c 10% i c 90% -50 0 5 0 100 150 200 3 3,05 3,1 3,15 3,2 time(us) % t r v ce i c copyright vincotech 1 9 revision: 4
v23990-p544-*3*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 4, 47 kw p on (100%) = 4, 47 kw e off (100%) = 0, 40 mj e on (100%) = 0, 34 mj t eoff = 0, 44 s t eon = 0, 20 s figure 7 ou tput inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) tur n-off switching waveforms & definition of t rr v geoff = 0 v v d (100%) = 30 0 v v geon = 15 v i d (100%) = 15 a v c (100%) = 30 0 v i rrm (100%) = 14 a i c (100%) = 15 a t rr = 0, 21 s q g = 10 5,74 nc switching definitions output inverter i c 1% v ge 90% -25 0 2 5 50 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 5 0 100 150 200 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon -5 0 5 10 15 20 -40 -20 0 20 40 60 80 100 120 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 - 80 -40 0 40 80 120 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % i d v d fitted copyright vincotech 2 0 revision: 4
v23990-p544-*3*-pm figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t e rec = integrating time for e rec ) i d (100%) = 1 5 a p rec (100%) = 4, 47 kw q rr (100%) = 1, 01 c e rec (100%) = 0, 20 mj t qrr = 0, 49 s t erec = 0, 49 s switching definitions output inverter t qrr -100 - 50 0 50 100 150 2,9 3,1 3,3 3,5 3,7 % i d q rr tim e(us) -25 0 25 50 75 100 125 2,9 3,1 3,3 3,5 3,7 time(us) % p rec e rec t erec copyright vincotech 2 1 revision: 4
v23990-p544-*3*-pm in datamatrix as in packaging barcode as p544-a38 p544-a38 p544-a39 p544-a39 p544-c38 p544-c38 p544-c39 p544-c39 x y 25.5 2.7 25.5 0 22.8 0 20.1 0 16.2 0 13.5 0 10.8 0 8.1 0 5.4 0 2.7 0 0 0 0 19.8 0 22.5 7.5 19.8 7.5 22.5 15 19.8 15 22.5 22.8 22.5 25.5 22.5 33.5 22.5 33.5 15 33.5 7.5 33.5 0 pin ordering code pinout ordering code and marking - features - outline - pinout ordering code & marking version without thermal paste 12mm 2 clips housing pin table outline without thermal paste 17mm 2 clips housing without thermal paste 12mm 2 clips housing without thermal paste 17mm 2 clips housing 5 6 7 8 1 2 3 4 9 16 17 10 11 12 13 22 23 18 19 20 21 14 15 v23990-p544-a38-pm V23990-P544-A39-PM v23990-p544-c38-pm v23990-p544-c39-pm copyright vincotech 1 revision: 4
v23990-p544-*3*-pm disclaimer li fe support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 4


▲Up To Search▲   

 
Price & Availability of V23990-P544-A39-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X